All rights reserved. No part of this document may be reproduced or stored, processed, duplicated or circulated using electronic systems, in any form or by any means, without the prior written authorisation of Bosch Rexroth AG. In the event of contravention of the above provisions, the contravening party is obliged to pay compensation. This document was prepared with the greatest of care, and all statements have been examined for correctness. This document is subject to alterations for reason of the continuing further developments of products.

No liability can be accepted for any incorrect or incomplete statements.

Series 2X

controls Type GMRP

Overview of contents

Nominal sizes 50 to 320

Contents	Page
Features	1
Section, function	2
Symbols, adjustment and determination of the delay angle	3
Ordering details, shaft loading	4
Technical data	5, 6, 7
Detent notches, holding torque, control connections	8
Unit dimensions	9, 10
Drive variants, selection diagram	11
Notes	12

ection, function	2
ymbols, adjustment and determination of the delay angle	3
rdering details, shaft loading	4
echnical data	5, 6, 7
etent notches, holding torque, control connections	8
nit dimensions	9, 10
rive variants, selection diagram	11

Features

Motor

- Short, compact design
- Good slow running characteristics
- Reversible
- High torques and starting torques
- Low running noise
- Roller guided gerotor motor
- High permissible RPM

Controls

- Valve controls with hydro-mechanical follow-up controls
- Valve control can be optionally rotated through 180°
- Standard directional valve for direction of rotation control
- Holding function in the depressurised condition
- High clock frequency
- Controllable start of delay
- RPM can be steplessly adjusted
- Adjustable delay valve
- Exact positioning
- Ports A and B for additional actuators

Application possibilities

- Tool changers
- Rotary tables
- Conveyor belts
- Handling systems
- Tool magazine chain
- Tool magazine plate _
- Tool turret
- Work piece magazine
- Pallet changer

RE 14 355/07.02 Replaces: 10.98

Hydro-positioning motor with integrated

GMRP

© 2002 by Bosch Rexroth AG, Industrial Hydraulics, D-97813 Lohr am Main

Section, function

Locked position

B

Α

3

Via the start/stop valve (1) the spring chamber of the control spool (4) is connected with the pressure side (P). There is no connection to the displacment chamber (3). The direction of rotation valve (2) is in the closed centre position.

The motor is locked.

2

ª∰XI[±][±]⊓I₩₽

Port (A) is connected to (P). Therefore, for example, a clamping or locking cylinder can be actuated.

Port (B) is connected to tank (T).

By activating the start/stop valve (1) the spring chamber of the control spool (4) is connected to tank (T) and the control spool (4) is moved into the unlocked position.

By activating the direction of rotation valve (2) the displacement chamber (3) is pressurised.

The motor starts to turn.

The achievable angular velocity is dependent on the flow. Via the throttle (5) it is possible to individually set the maximum speed.

Port (B) is connected to port (P), port (A) to the tank (T). Clamping or locking cylinders that may be fitted are released.

Delay phase

When approching the required position the delay is activated via the start/stop valve (1). Due to the connection of the spring chamber with (P) the control spool moves in the direction of the detent disc (6).

As soon as the outer contour of thze plate has contanct the damping cross-section (7) of the tank line is virtually closed by the control spool (4).

Thereby the flow is throttled and the speed is correspondingly reduced.

When the detent position is reached the connection to the tank is completely closed and the motor is in its locked position.

Adjustment of the delay relationship

Determination of the delay angle

To guarantee shock-free positioning, the start valve must be reset at a specific angle before the end position of the motor is reached.

This angle ($\varphi_{\rm P}$) can be determined as follows:

- $\varphi_{\rm P}$ = disc delay angle $\varphi_{\rm V}$ + progress angle during the signal propagation time within the electronics $\varphi_{\rm E}$
 - $\varphi_{\rm V} = 60^{\circ}$ with 1 and 2 positions per rotation 40° with 3 positions per rotation

$$\varphi_{\rm E} = \frac{n}{60} \bullet (t_{\rm S} + t_{\rm valve}) \bullet 360^\circ$$

- n = RPM of the GMRP motor [min⁻¹](set at the RPM screw)
- t_S = Signal propagation time within the electroncis [s] (angle of rotation transmitter, control)
- $t_{valve} =$ Switch-off time of the start valve (0.025 s)

$$\Rightarrow \quad \varphi_{\rm P} = \varphi_{\rm V} + \frac{n}{60} \bullet (t_{\rm S} + 0.025 \text{ s}) \bullet 360^{\circ}$$

The outer contour of the detent disc is so formed that as the detent notch is approached the disc radius and thereby the damping cross-section (7) reduced.

The delay characteristics of the GMRP motor is progessive.

So that the mass moved can be individually matched it is possible to adjust the damping cross-section (7). The damping cross-section (7) can be set via an adjustment mechanism (8) on the control spool. The delay relationship can be, therefore steplessly selected between "soft" and "hard". This is also possible during or after the machine commissioning.

If the calculated angle $\varphi_{\rm P}$ is greater than:

350° with 1 position per rotation 170° with 2 positions per rotation 110° with 3 positions per rotation

Then this can lead to faulty positioning. In this case the motor speed should be reduced via the throttle **5**.

	CMDD	· ·	ov/ve	n	<u> </u>			7		-		
Nominal size	GIVIKP	<u> </u>	<u>2 ∧ /</u> IV							^		Further details
50 cm ³	= 050											in clear text
80 cm ³	= 080											Status acquisition
100 cm ³	= 100									No co	ode =	Without
125 Cm^3	= 125											status acquisition
200 cm ³	= 100									S =		With switching disc
250 cm ³	= 250										Нус	raulic connections
320 cm ³	= 320								Noc	ode =	Со	nnection surface with
Shaft end												O-ring seal
Cylindrical Ø 1", with Cylindrical Ø 1 $1/4$ " w	key-way ¹⁾ /ith key-way ²⁾	= W = W							01 =	•	Conn	ection plate with pipe thread to ISO 228/1
Cylindrical Ø 20 mm, v	vithout key-way	$ ^{1)} = 1$	r									Solenoid voltage
Series 20 to 29 (20 to 29: unchanged	installation	= 2)	(G24 W11	= 0 =			24V/DC 110V/AC
and connection dimen	sions									Di	rectio	n of rotation valve
Seals							1 =	F	orting	patterr	n to DII	N 24 340, form A, ISO
NBR seals suitable for DIN 51 524, part 2 for	mineral oil HLP t operating tempe	o eratures < 7	= M 0 °C.				2 =		4401 a With I	and CET built-on	OP-RP directi	121 H for valve NS 6 onal valve, for further
Please take into ou catalogue sheet RE	r specifications 07 075.	s stated w	ithin				3 =	Ir	iforma With	tion see 1 built-c	e catalo n direc	tion of rotation plate, clockwise rotation 4)
Mounting flange							4 =		With	ı built-o	n direc	tion of rotation plate,
2-hole, SAE A ³⁾ 4-hole, spigot Ø 80 mr	n			= R = A							ant	i-clockwise rotation ⁴⁾
No. of detent notch	es					1_	P	orte at	roar _	diractic	nal val	lve on drive shaft side
One position per rotat Two positions per rota Three positions per rot	on tion ation				= 1 = 2 = 3	2 =	Port	s at th	e front	(c direc : – direc (ci	an be tional	rotated through 180 ° valve on end cap side otated through 180 °)

¹⁾ NS 50 to NS 200

²⁾ NS 250 and NS 320

 $^{\rm 3)}$ Not with NS 250 and NS 320

⁴⁾ Direction of rotation viewed on the drive shaft

Permissible drive shaft loading

Technical data: motor (for applications outside these parameters, please consult us!)

General										
Design			Gerotor motor with valve control and hydro-mechanical follow-up controls							
Туре			GMRP							
Mounting style			Flange mounting							
Shaft loading			See pag	je 4						
Direction of rotation			Clockw	ise / anti	i-clockwi	se - reve	rsible			
Hydraulic										
Nominal size		NS	50	80	100	125	160	200	250	320
Displacement volume	V	cm ³	50.9	78.7	98.9	123.6	158.5	197.8	247.2	316.9
Start-up torque (at $p = 70$ bar)	$T_{\rm Start}$	Nm	31	60	76	96	125	150	206	262
Torque	$T_{\rm max}$	Nm	44	73	90	113	148	184	232	294
RPM (at 20 L/min)	n _{max}	min ⁻¹	378	240	190	155	119	96	77	60
Operating pressure (continuous operation)	$p_{\rm max}$	bar	70							
Return pressure	$p_{\rm max}$	bar	10							
Inlet pressure	$p_{\rm max}$	bar	70							
Pressure fluid			Mineral	oil (HLP) to DIN	51 524;	part 2			
Pressure fluid temperature range	θ	°C	– 10 to	+ 70						
Viscosity range	ν	mm²/s	10 to 1	60 at op	erating t	emperat	ure (max	. 800 at	start-up)	
Degree of contamination				fluid is to NAS 1638 class 10. We, therefore recommend a filter with a minimum retention rate of $\beta_{20} \ge 100$. To ensure a long service life, we recommend class 9 to NAS 1638. Achievable with a filter that has a minimum retention rate of $\beta_{10} \ge 100$.						
Positioning time for 180°	t	S	< 0.5							
Positions per rotation			1, 2 or	3						
Type of positioning			Posative locking							
Technical data: start / stop - valv	/e									
Electrical										
Voltage type					DC			A	AC	
Available voltages	U	V			24		with	Solenoi n rectifie	d 96V/D0 r for 110	Z V/AC
Power consumption at 20 °C	Р	W	26				·			
Duty		%	6 100							
Switching time	t _{on}	ms	≤ 20 to	45						
	$t_{\rm off}$	ms	≤ 10 to	25						
Protection to DIN 40 050	Solenoid a	and connection	ection IP 65							
Switching frequency	f	Hz	Hz 4							
Ambient temperature	θ	°C	C Up to 50							
Coil temperature	θ	°C	Up to 1	50						

Attention!

The use of a fault protection circuit to CE increases the switch-off time. When operating with AC voltage the rectifier plug supplied must be used.

Technical data (average values, measured at $v = 46 \text{ mm}^2/\text{s}$ and $\vartheta = 45 \text{ °C}$)

NS 50				Flow <i>q</i> _v in L/min								
			0	5	10	15	20					
bar	20	T in Nm	6	10	8	7	6					
		<i>n</i> in min ⁻¹	0	93	192	286	382					
d∆l	40	T in Nm	16	24	22	18	12					
entia		<i>n</i> in min ⁻¹	0	93	192	286	382					
fere	60	T in Nm	27	38	37	32	27					
e dif		<i>n</i> in min ⁻¹	0	93	192	286	382					
ssur	70	T in Nm	31	44	44	40	34					
Pre		n in min ⁻¹	0	91	187	286	378					

NS 80				Flow $q_{\rm v}$ in L/min								
			0	5	10	15	20					
oar	20	T in Nm	15	19	14	8	0					
in		<i>n</i> in min ⁻¹	0	60	117	183	0					
d∠l	40	T in Nm	32	42	39	31	22					
intia		<i>n</i> in min ⁻¹	0	57	117	183	240					
ffere	60	T in Nm	50	64	62	56	45					
e dif		<i>n</i> in min ⁻¹	0	54	117	178	240					
ssur	70	T in Nm	60	73	73	67	57					
Pre		<i>n</i> in min ⁻¹	0	52	114	174	240					

NS 100				Flow <i>q</i> _v in L/min								
			0	5	10	15	20					
oar	20	T in Nm	18	24	19	10	0					
in		<i>n</i> in min ⁻¹	0	47	93	144	0					
d∠l	40	T in Nm	40	51	47	39	28					
ntia		<i>n</i> in min ⁻¹	0	47	93	142	190					
ffere	60	T in Nm	65	77	74	67	57					
e dif		<i>n</i> in min ⁻¹	0	46	93	141	190					
ssur	70	T in Nm	76	90	88	82	70					
Pre		<i>n</i> in min ⁻¹	0	43	93	141	190					

NS 125				Flow <i>q</i> _v in L/min								
			0	5	10	15	20					
bar	20	T in Nm	23	31	25	14	0					
		<i>n</i> in min ⁻¹	0	38	80	118	0					
d∠	40	T in Nm	53	64	60	49	34					
intia		<i>n</i> in min ⁻¹	0	38	80	118	158					
fere	60	T in Nm	83	97	95	85	71					
e dii		<i>n</i> in min ⁻¹	0	37	78	117	156					
ssur	70	T in Nm	96	113	113	104	88					
Pre		n in min ⁻¹	0	35	76	116	155					

NS 160		Flow $\boldsymbol{q}_{\mathrm{v}}$ in L/min							
			0	5	10	15	20		
oar	20	T in Nm	30	42	33	17	0		
int		<i>n</i> in min ⁻¹	0	30	62	92	0		
l∆p	40	T in Nm	67	84	77	64	46		
intia		<i>n</i> in min ⁻¹	0	30	62	91	121		
fere	60	T in Nm	109	127	124	111	93		
e dif		<i>n</i> in min ⁻¹	0	29	59	91	121		
ssur	70	T in Nm	125	148	146	136	116		
Pre		<i>n</i> in min ⁻¹	0	26	59	88	119		

Technical data (average values, measured at $v = 46 \text{ mm}^2/\text{s}$ and $\vartheta = 45 \text{ °C}$)

NS 200				Flow <i>q</i> _v in L/min								
			0	5	10	15	20					
bar	20	T in Nm	40	52	42	23	0					
		<i>n</i> in min ⁻¹	0	25	49	73	0					
l⊅p	40	T in Nm	87	106	99	79	58					
entia		<i>n</i> in min ⁻¹	0	25	49	73	97					
fere	60	T in Nm	130	158	154	139	113					
e dif		<i>n</i> in min ⁻¹	0	24	48	73	97					
ssur	70	T in Nm	150	184	180	167	142					
Pre		<i>n</i> in min ⁻¹	0	22	48	73	96					

NS 250				Flow <i>q</i> _v in L/min								
			0	5	10	15	20					
bar	20	T in Nm	47	64	50	27	0					
in		<i>n</i> in min ⁻¹	0	21	40	60	0					
l∆p	40	T in Nm	106	133	124	102	70					
intia		<i>n</i> in min ⁻¹	0	20	40	59	80					
ffere	60	T in Nm	175	200	192	173	147					
e dit		<i>n</i> in min ⁻¹	0	19	39	59	77					
ssur	70	T in Nm	206	232	228	210	180					
Pre		<i>n</i> in min ⁻¹	0	19	37	57	77					

NS 320				Flow <i>q</i> _v in L/min								
			0	5	10	15	20					
bar	20	T in Nm	62	83	69	35	0					
in l		<i>n</i> in min ⁻¹	0	14	30	46	0					
l⊿β	40	T in Nm	144	171	158	131	94					
intia		<i>n</i> in min ⁻¹	0	14	30	45	60					
ffere	60	T in Nm	230	258	246	223	187					
e dif		<i>n</i> in min ⁻¹	0	14	30	45	60					
ssur	70	T in Nm	262	294	290	265	229					
Pre		<i>n</i> in min ⁻¹	0	14	29	44	60					

Detent notches

The form of the detent notch ${\bf 1}$ and the detent element ${\bf 2}$ determines the holding torque in the locked condition and the positional accuracy.

Positional accuracy: 30' Repeatability: 10'

Holding torque of the GMRP positioning detent

Via the control ports ${\bm A}$ and ${\bm B}$ it is possible to directly supply the clamping cylinders.

If higher flows are required, then we recommend that a hydraulically actuated NS 6 or 10 directional control valve (RE 22 282 or RE 22 331) is operated via the control ports \bf{A} and \bf{B} of the positioning motor.

NS	50	80	100	125	160	200	250	320
L_1,5	158	162	165	168	173	178.5	185	195

Unit dimensions (for position explanations see page 9)

(Dimensions in mm)

GMRP

11/12

RE 14 355/07.02

Excentra GmbH & Co. KG

Postfach1325•D-70703Fellbach, WürttembergSteinbeisstraße15•D-70736Fellbach, WürttembergTelefon0711 / 5761-0Telefax0711 / 5761-365eMailinfo@excentra.deInternetwww.excentra.de

The data specified above only serves to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. It must be remembered that our products are subject to a natural process of wear and ageing.