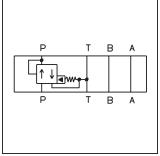
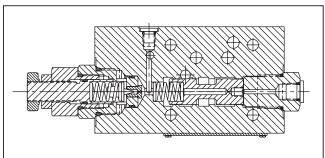
Sandwich Valves Series PRM

www.khadamathydraulic.com Tell: 021-55882749 Tell: 021-33488178 Fax: 021-33488105

General Description

Series PRM reducing valves are used to regulate pressure, in one area of a circuit, below normal system pressure. This style valve is well suited to perform this function as it mounts directly below the directional control valve.


Operation


These are "normally open" valves that allow fluid to pass through the controlled port during typical operation. When downstream pressure rises above the value set by an adjustable spring force, the control pilot opens and allows the main spool to move from a full open position. The main spool modulates to maintain the desired "reduced pressure" downstream of the valve. The PRM3 also has a relieving mode.

Features

- PRM sandwich style pressure reducing valves can be used to reduce pressure on the 'P' port, the 'A' port, or the 'B' port.
- Three pressure adjustment options are available: slotted screw, knob and locking knob. (PRM6 only)
- Valve bodies are manufactured from steel which provide extra strength and durability for longer life. Internal hardened steel components also provide longer life.

PRM3/PRM6

Connecting the vent port to tank allows the reducing valve to divert flow at minimum

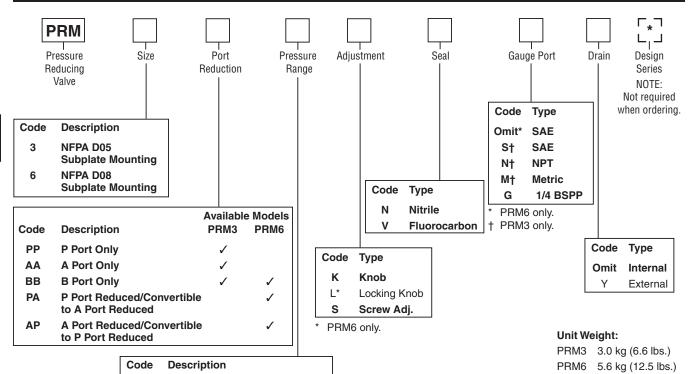
Remote control valve connected to the vent port can be used to control the pressure.²

pressure is thus added to the valve setting.3

ISO 4406 (1999); 18/16/13 (meet NAS 1638:7)

Specifications

	PRM3	PRM6	
Mounting	NFPA D05,	NFPA D08,	Filtration
Pattern	CETOP 5, NG 10	CETOP 8, NG 25	Venting
Minimum Pressure	10 Bar (150 PSI) wit oil, and fluid tempera		
Maximum Pressure	345 Bar (5000 PSI)	345 Bar (5000 PSI)	Remote Control
Min. Flow	3.78 LPM (1 GPM)	3.78 LPM (1 GPM)	Drain Line
Maximum Flow	64 LPM (17 GPM)	189 LPM (50 GPM)	¹ Change in
Pressure Range	07 10 to 17 10 to 25 10 to	Pressure Range 10 to 70 Bar (150 - 1000 PSI) 10 to 175 Bar (150 - 2500 PSI) 10 to 250 Bar (150 - 3500 PSI) 10 to 350 Bar (150 - 5000 PSI)	


Change in flow, temperature or fluid (SSU) rating will affect valve minimum pressure.

pressure.

Drain line from pilot valve is internally connected to the tank port. Tank line

-Parker

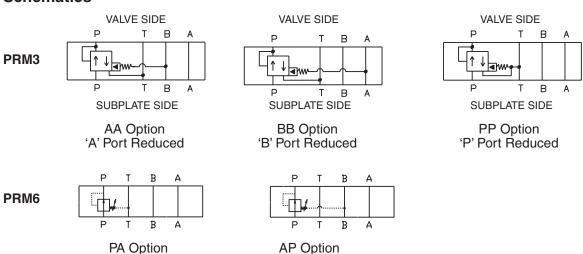
Set main valve pressure 10 Bar (150 PSI) higher than remote pilot.
 It is important that the drain line connection be taken into consideration when determining the minimum valve setting.

07 10 to 70 Bar (150 to 1000 PSI) 17 10 to 175 Bar (150 to 2500 PSI) 25 10 to 250 Bar (150 to 3500 PSI)

10 to 345 Bar (150 to 5000 PSI)

Bold: Designates Tier I products and options.

Non-Bold: Designates Tier II products and options. These products will have longer lead times.

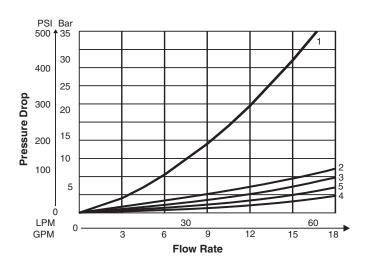

Bolt Kits

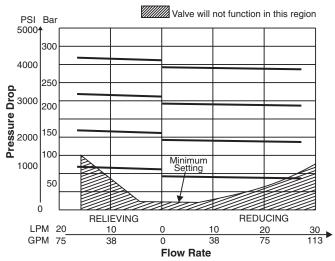
Size "3"				Size "6"				
		Bolt Length mm (in)	No. of Sandwich	Sandwich & Valve Combination	Bolt Bolt Length Kit mm (in)			
1	Sandwich & D3	BK141	88.9 (3.50)	1	Sandwich & D6	BK121	133.4 (5.25)	
2	Sandwich & D3	BK142	139.7 (5.50)	2	Sandwich & D6	BK122	203.2 (8.00)	
3	Sandwich & D3	BK143	190.5 (7.50)	3	Sandwich & D6	BK123	273.1 (10.75)	
* D31VW with internal pilot and internal drain only.				4	Sandwich & D6	BK124	342.9 (13.5)	

35

Bolt Kits must be ordered separately.

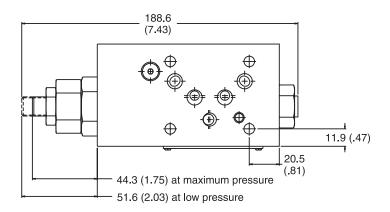
Schematics



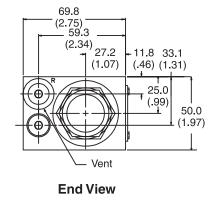


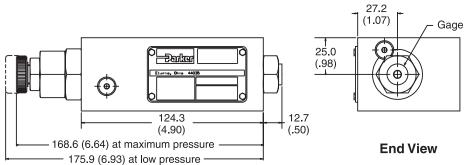
Technical Information

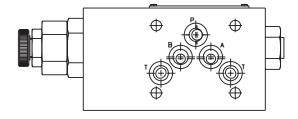
Performance Curves



Mode	Flow Path					
	$P \to P$	$A\toA$	$B\toB$	$T \rightarrow T$		
PP	1	2	3	4		
AA	1	2	3	5		
BB	1	2	3	5		

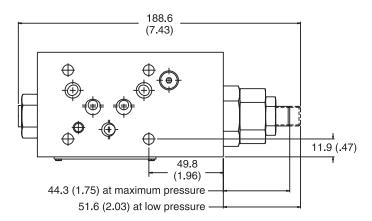

Viscosity Correction Factor							
Viscosity (SSU)	75	150	200	250	300	350	400
% of ΔP (approx.)	93	111	119	126	132	137	141
Curves were generated using 100 SSU hydraulic oil. For any other viscosity, pressure drop will change per chart.							


NOTE: Lowest pressure setting dependent upon system resistance.

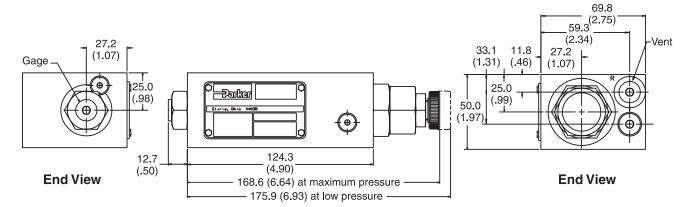


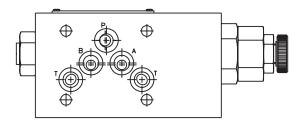
Top View

Face View



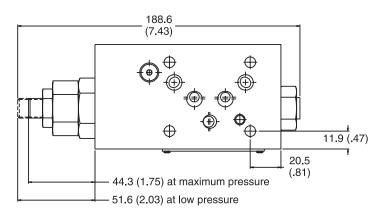
Bottom View



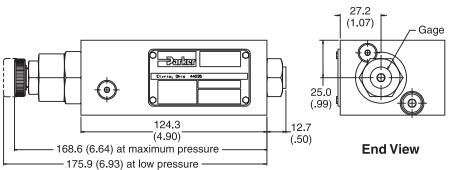

PRM3BB

Top View

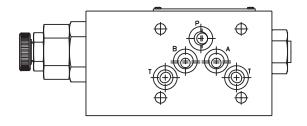
Face View



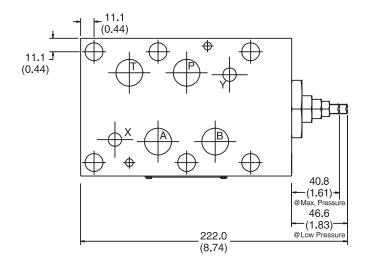
Bottom View

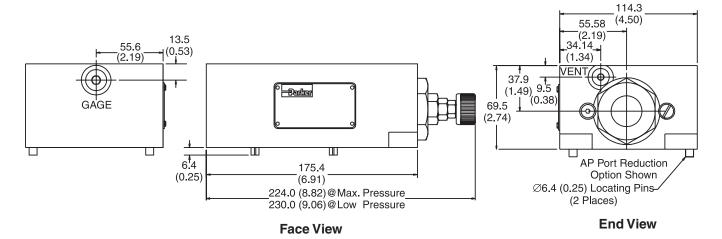


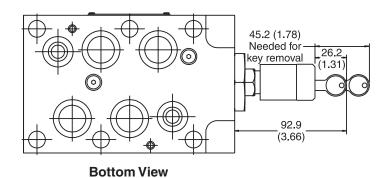
PRM3PP



Top View


Face View


Bottom View



Top View

